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In numerous applications, upstream differencing has been used to treat the horizontal 
advection terms in primitive-equation models of the atmosphere. Though solutions to these 
equations are characterized by the presence of gravity waves, the velocity of these waves is 
not taken into account in formulating the difference equations. Determination of the 
“upstream” direction is based upon consideration of the transport velocity alone. With this 
approach, very small time steps are required to maintain computational stability when the 
gravity wave speed is large compared to the advecting speed. For the modeler who wishes to 
retain upstream differencing in such cases, a simple method is presented to enlarge the 
stability region. 

1. INTR~DIJCTT~N 

For many years the upstream differencing technique has provided an attractively 
simple alternative for approximating the advection terms in primitive-equation models 
of the atmosphere. Though the technique has been heavily criticized for its low-order 
error which acts as a dissipating agent [ 11, a  number of research efforts in 
meteorology have used upstream differencing with reported success (e.g., [2-5 I). 
Since the upstream scheme is most often used to treat the horizontal component of 
atmospheric flow and since the precise nature of the true horizontal diffusion process 
is not known, it may be that the inherent numerical diffusion provides some 
reasonable approximation to reality. 

It is the authors’ contention that the principal shortcoming of the upstream method 
lies not in its dissipative character but in its inability in many situations to deal effec- 
tively with gravity-wave-generating systems such as the primitive equations of 
meteorology. The problem arises from the fact that direct application of the upstream 
method takes account only of the advecting velocity and not of the gravity-wave 
velocity. Such an approach leads to severe restrictions on the size of the time step in 
order to maintain computational stability whenever the gravity-wave velocity is large 
in magnitude relative to the transport velocity. This fact may explain the current 
usage of various numerical techniques (e.g., splitting methods, semi-implicit methods) 
designed to maintain stability in meteorological models that employ upstream dif- 
ferencing. 

A case study will be presented to illustrate the computational difficulties incurred 
in applying the upstream method to wave-type equations, and a simple procedure will 
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be given to enlarge the stability region without seriously affecting the truncation error 
of the scheme. 

2. CASE STUDY 

For our analysis we consider the linearized, one-dimensional shallow water wave 
equations 

-=qJau-3! au 
at ax ax’ (14 

(lb) 

for t 2 0, 0 < x < rc, where u is the perturbation velocity, 4 the geopotential, U the 
(constant) mean velocity, g the acceleration of gravity, and H the (constant) mean 
height. We shall assume periodicity in x and thereby avoid the problems associated 
with the treatment of lateral boundaries. Equations (la) and (lb) are easily 
transformed into a pair of uncoupled equations by first multiplying (lb) by (gH)-I’* 
and then taking both the sum and the difference of the equations for au/at and 
aI(ll*gj/at t0 get 

at -=-(u+c)Z, at 
all -=-(U-c)$ at 

where 

r= u + o$p*q4 W 
q = u - (gfz-“24, WI 

and 

c = (gH)? (4) 

Equations (2a) and (2b) each take the form of a simple transport equation which can 
be solved by straightforward application of upstream differencing taking into account 
the direction of velocities U + c and U - c. Clearly, c > 1 UI implies that “upstream” 
in (2a) will be opposite in direction from that in (2b). The scheme will be stabIe 
provided the Courant-Friedrichs-Levy criterion is satisfied, i.e., 

(IUl +c)At < 1 
Ax ’ (5) 
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In treating primitive-equation models of meteorology, we are not afforded the lux- 
ury of such a convenient transformation and instead must deal with a coupled system 
of equations analogous to (la) and (lb) but more complicated in various respects. In 
order to illustrate the problem in applying upstream differencing directly to the 
primitive equations, we shall apply the method to the simplified system (1) and 
analyze the resulting scheme for stability. 

Let z$’ denote the finite-difference approximation to u(t, x) = u(ndt, jdx), where At 
and Ax (=rr/J) are the temporal and spatial grid increments, respectively, and define 
@J’ in a similar manner. Assume U > 0. Then a direct upstreamdifferencing approach, 
based on consideration of the transport velocity direction, yields the equations 

q-q _ 
u #;-ui”-l 

At -- 
_ fyi”,1 -E-l 

Ax 2Ax ’ 

CT/- = -u 4; - 4;- 1 u;+ 1 - u;- 1 
At Ax @  2Ax ’ 

(64 

for II = 0, 1, 2 ,... and j = 0, I,..., J, where we have used centered differences for the 
“non-transport” terms. Instead of analyzing (6) directly, we can transform the dis- 
crete system in the same way that we transformed the continuous system. This ap- 
proach leads to the uncoupled difference equations 

nt1 r. -I_--.- _ _ -t;- urj”-t--p, 
At Ax 

-,t;tl -“-I, 
2Ax (74 

Vb) 

Since (J and ~7 are just linear combinations of u,; and QJ’, the stability criteria for 
systems (6) and (7) will be equivalent. The advantage in dealing with (7) is that each 
equation may be analyzed separately. 

To carry out the stability analysis, we first consider (7a) and use the Fourier series 
approach (e.g., [6]) assuming <!’ to take the form 

(j” = A neikiAx. G-3) 

Substitution of (8) in (7a) yields the characteristic equation 

A - 1 = --K~( 1 - ePikAx) - rczi sin kdx, (9) 

where 

K, z.z ud’ 

Ax (10) 
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and 

At 
K2 =% (11) 

Scheme (7a) will be stable if and only if IA 1 < 1. A straightforward calculation shows 
that the equivalent criterion IA I* < 1 may be written as 

-2K1( 1 - K‘) + (2/c* K2 + Kg (1 + cos kdx) < 0. (12) 

Inequality (12) must hold for all wavenumbers k, with the most stringent condition 
occurring for cos kAx = 1 in which case the criterion for stability becomes 

-2K,(1 -K,)+ 2(2K,K, + K;)< 0 (13) 

or 

@I + K212 < K,. 

In terms of the basic parameters, (14) is equivalent to the condition 

(14) 

( 1 I+$ (o+c)A$< 1. (15) 

This places a more severe restriction on the size of At than does (5), most significan- 
tly when c becomes large compared to U. For illustrative purposes we shall stay with 
the K~, ~~ formulation and rewrite (14) as 

0 <K2 <K;'* -K,. (16) 

(The upper and lower bounds imply that K, must be <l in order for the possibility of 
a stable solution to exist.) The stability region in terms of K, and K* is shown by the 
shaded area in Fig. 1. 

We now must determine under what conditions (7b) will be stable. For (7b), ine- 
quality (12) is replaced by 

-2K,(1-K,)+(-2K,K,+K;)(l+COSkAx)<O. (17) 

We consider two cases: Case i: (-~K,K, + K:) < 0 [or K* < 2~~ 1. Here the most 
stringent condition in (17) occurs for two-grid-interval waves (cos kdx = -1) in 
which case the criterion for stability becomes 

-2K,(1 -K,)<o (18) 

K, = U$< 1. (19) 
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FIG. 1. The stability region for (7a) (shaded area) and for (7b) (outlined by the dashed line) when 
U > 0. The intersection of the two regions (shaded area) is the stability region for the combined system 
(7). 

Case ii: (-21~~~~ + K:) > 0 [or IC* > 2~~1. In this case the longest waves (cos 
kdx = 1) determine the criterion 

-2rC,(1 -K,)+2(-2K,K, +K;)<O (20) 

or 

(K, - 4* < K,. (21) 

From (21) it follows that 

The stability region for (7b), as determined by (19) and (22) is bounded by the 
dashed line in Fig. 1. This line is seen to encompass the shaded area which thus 
represents the stability region for the system (7). Hence, (7) or equivalently (6) is 
stable if and only if (15) is satisfied. 

A corresponding analysis for U < 0 (K, < 0) can be carried out to determine a 
stability region symmetric to the shaded area of Fig. 1 with respect to the x,-axis. 

The results of the above stability analysis firmly establish the need to enlarge the 
stability region, the need being greatest for those cases in which c 9 /U]. In the 
following section a procedure is presented for modifying the finite-difference scheme 
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(6) in such a way as to institute (5) as the stability criterion and thereby accomplish 
our goal of easing the restriction on At. 

3. A REMEDIAL MEASURE 

Our approach is to deal with the stability problem through modification of the 
(u, 4) equations rather than to directly form stable finite-difference analogs of (2) 
since in most practical applications, a convenient (C;, rj) transformation is not 
available to us. 

By use of Taylor series expansions, it is easily shown that the truncation error in 
(6a) takes the form 

T=Ax f[U(l-K,)-~~,~~--K,~~~+O[(A~)*]+O[(A~)~]. 
I 

(23) 
j 

(The order of the error is as low as it can be and still provide a consistent finite- 
difference approximation to (l).) The order of accuracy, then, will not be lowered if 
we append to the right-hand side of (6a) a diffusion-type term of the form 

K ui”+ 1 - 2ui” + z&= K 

(Ax)* 
(24) 

provided that K is O(Ax). Suppose such a term is added to (6a) with an analogous 
approximation to K a*d/ax* added to (6b). If the diffusion is arbitrarily assigned the 
form 

K = fcdx, (25) 

the modified difference equations corresponding to (7) become 

Wb) 

Equation (26a) is the usual upstream difference approximation to a transport equa- 
tion with advecting velocity U + c for which the stability criterion is well known to 
be 
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FIG. 2. The stability region for system (7) with added diffusion (shaded area) and without added 
diffusion (outlined by the dashed lines). The explicit diffusion terms added to (7a) and (7b) are similar 
in form to (24) with K given by (25). 

The stability criterion for (26b) is found by substituting for $’ the Fourier term (8) to 
arrive at the characteristic equation 

A - 1 = +cr(l - eeikAX) + rcZ(eikAx- 1). (28) 

The requirement (A I* < 1 then is equivalent to the condition 

-(K~ +K~)+K;+IC;-~~K~K~ cos kAx<O. (29) 

The left-hand-side is maximized for cos kAx = -1, so that the condition for stability 
becomes 

-(K1 + K2) + (K1 + K2)* < 0. (30) 

This inequality is equivalent to (27) which is thus’established as the stability criterion 
for the diffusion-augmented system. 

Consideration of the case U < 0 yields the combined criterion (5), which deter- 
m ines the stability region shown by the shaded area in Fig. 2. The area represents a 
considerable enlargement of the region determined by (15) (outlined by the dashed 
line in the figure). 

4. NUMERICAL EXPERIMENTS 

To test the effectiveness of the approach proposed in Section 3, several numerical 
experiments were carried out by solving (6) with and without the supplementary dif- 
fusion terms. The dependent variables 4 and u were assumed to be periodic of period 
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2X, and for initial conditions a “chapeau” function was used; i.e., for x in meters, we 
set 

qw, x) = c, + c*x, -2<x<o 
= c, - c*x, o<x<2 (31) 
= 0, elsewhere in [-X, X] 

with 

u(0, x) = *c-l qqo, x). (32) 

The constants were chosen to be X = 10 m, C, = 100 msec-* and C, = 50 msecc*. 
Selection of the plus sign in (32) suppresses the q-component of the analytic solution 
so that u and 0 are functions of x - (17 + c)t only; similarly, choice of the minus sign 
implies that r = 0 in which case ZJ and 4 are functions of x - (U - c)t. Condition (32) 
then guarantees that the initial wave form will propagate without distortion, returning 
to its initial. position after a full period T = 2X/(U f c). The diffusion properties of 
the finite-difference schemes under consideration, however, can be expected to 
produce numerical results that differ considerably from the analytic solution. 

In the following discussion we refer to scheme (6) as scheme I (K = 0) and to the 
diffusion-augmented scheme as scheme II (K = $Ax). The values of At were chosen 
such that. 

( 1 l+& (lUi+c)g=0.8 

for scheme I and 

(I UI + c) 2 = 0.8 

for scheme II in order to stay a safe distance within the stability region. (Such cau- 
tion is really not called for here but would be advisable in practical application.) 

In the set of experiments, the parametric values were selected to be 

c = U= 5 msec-‘, Ax=lm, 
At, = 0.04 set, At*, = 0.08 set 

with the obvious subscripting convention. Figure 3a shows I$ x 10 ’ vs x at time 
t = 2 set for the initial condition ~(0, x) = --c- ‘#(O, x); the solid line is the analytic 
solution (identical to the initial form of 4 x lo-*), the dotted line the scheme 1 
solution and the dashed line the scheme II solution. For this case, U - c = 0 and the 
wave remains stationary but becomes considerably spread out by both schemes I and 
II with scheme II supplying slightly more diffusion. Fig. 3b shows the solutions at 
time 1= 2 set (one period) using the initial condition ~(0, x) = c ‘#(O, x); here the 
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c=w=7.5ms-’ 

2t -. I i 
-10 0 Cl0 

= (ml 

FIG. 3. Analytic solution (solid line), scheme I solution (dotted line) and scheme II solution (dashed 
line) for o x lo-’ as a function of x after one period for (a) c = U= 5 msec~’ with initial condition 
u(O.x)=-cm’((O,x); (b) c= U=Smsec~’ with ~(0, x) = c- ‘)(O, x); (c) c = 3 CT = 7.5 msec ’ with 
~(0, x) = --cm ‘d(0, x); and (d) c = 3U = 7.5 msec ~’ with ~(0, x) = cm ‘#(O, x). Arrows indicate direction 
of propagation. 

waves have progressed in the positive x-direction (indicated by the arrow). Scheme I 
introduces considerable phase lag and negative geopotential, while the scheme II 
solution, though somewhat damped, ends up nearly symmetrical about the origin and 
positive for all x. 

Figures 3c and d show the results of analogous runs after one period for 
parametric values 

c= 3U= 1.5 msec-‘, dx=lm, 

At, = 0.02 set, At,, = 0.08 set 

Here the features, while more pronounced, are qualitatively the same as found in 
Figs. 3a and b. 

The limited number of tests performed indicate that the more efficient scheme II is, 
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at worst, slightly less accurate than scheme I and in some cases actually a more 
acceptable method. Substantial gain in efficiency can be realized by using scheme II 
when c > 1 UI since we can increase the time step over that of scheme I by a factor of 
1 + c/l q. 

5. SUMMARY 

In a number of meteorological modeling efforts, upstream differencing has been 
used to treat advection terms that appear in the primitive equations. Solutions to 
these equations are characterized by the presence of gravity waves. When explicit- 
type finite-difference schemes (such as the upstream scheme) are used to provide a 
numerical solution, the time step is limited not only by the magnitude of the transport 
velocity but also by that of the gravity-wave velocity. By neglecting the presence of 
gravity waves in formulating the upstream difference equations, there can result a 
severe restriction on the allowable size of the time step when the gravity-wave speed 
is large compared to the advecting speed. Violation of the criterion that places a limit 
on the time step gives rise to computational instability. The computational problem is 
brought to light through analysis of the shallow water equations, and a simple 
procedure is given to ease the restriction on the size of the time step. 
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